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Figure 1. TOUCHTOKENS are passive tokens that guide users’ fingers to specific spatial configurations, resulting in distinguishable touch patterns.

ABSTRACT
TOUCHTOKENS make it possible to easily build interfaces
that combine tangible and gestural input using passive tokens
and a regular multi-touch surface. The tokens constrain users’
grasp, and thus, the relative spatial configuration of fingers
on the surface, theoretically making it possible to design al-
gorithms that can recognize the resulting touch patterns. We
performed a formative user study to collect and analyze touch
patterns with tokens of varying shape and size. The analysis
of this pattern collection showed that individual users have
a consistent grasp for each token, but that this grasp is user-
dependent and that different grasp strategies can lead to con-
founding patterns. We thus designed a second set of tokens
featuring notches that constrain users’ grasp. Our recognition
algorithm can classify the resulting patterns with a high level
of accuracy (>95%) without any training, enabling applica-
tion designers to associate rich touch input vocabularies with
command triggers and parameter controls.

Author Keywords
Tangible interaction; Multi-Touch input

ACM Classification Keywords
H.5.2 : User Interfaces - Graphical user interfaces.

INTRODUCTION
The main characteristics of multi-touch gestures performed
on the capacitive screens that typically equip tablets, smart-
phones, touchpads, as well as some tabletops, are the num-
ber of fingers involved and the individual trajectories of those
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fingers. Examples include 2- or 3-finger slide, and 2-finger
pinch. But to the exception of a few research projects that
consider touch points as chords [19, 21], interactive systems
ignore the relative spatial configuration of contact points;
what we call a touch pattern.

Our goal is to enable users to perform gestures based on a set
of distinct touch patterns, thereby increasing the richness of
input vocabularies for tactile surfaces. Our approach relies on
physical guidance, as it would be unrealistic to expect touch
patterns to be executed consistently across users, or even over
time by the same user. As the literature suggests that users
adopt grasp strategies that depend on the object to manipu-
late [39, 47], we investigate the potential of tangible tokens
held on the surface to act as physical guides constraining the
relative position of users’ fingers.

We present TOUCHTOKENS, a novel interaction technique
based on a set of easy-to-make passive tokens and a fast and
simple recognition algorithm that can discriminate the unique
touch pattern associated with each token in the set.1 The ap-
proach features several advantages. First, physical tokens can
provide space-multiplexed input by associating different con-
trollers with different functions [18]. Second, tokens can alle-
viate issues related to discovery, exploration and learning in-
herent to gesture-based interaction [56]. Finally, tokens pro-
vide haptic feedback that promotes eyes-free interaction [28].

TOUCHTOKENS make it easy to implement applications that
combine multi-touch and tangible input at low cost. Such a
combination has the potential to foster collaboration, support
distributed cognition, and enhance the user experience [1, 29,
46]. As opposed to other tangible systems that require elec-
tronic instrumentation (e.g., [9, 34]) or specific conductive
material (e.g., [17, 33]), our system relies on an algorithm

1Implementations of the algorithm and vector descriptions of the
tokens ready for 3D-printing or laser-cutting are available at
https://www.lri.fr/~appert/touchtokens/.
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ABSTRACT
TouchTokens are passive tokens that can be recognized on any
capacitive surface based on the spatial configuration of the fin-
gers that hold them. However, interaction with these tokens
is confined to the basic two-state model of touch interaction
as the system only knows the tokens’ position and cannot de-
tect tokens that are not touched. We increase the expressive
power of TouchTokens by introducing laser-cut lattice hinges
in their design, so as to make them flexible. A new recog-
nizer, that analyzes the micro-movements of the fingers that
hold the tokens, enables the system to detect when a token is
left on the surface rather than taken off it. It can also detect
bend events that can be mapped to command triggers, and a
squeezed state that can be used for quasi-modal interaction.

ACM Classification Keywords
H.5.2 : User Interfaces - Input devices and strategies.

Author Keywords
Tangible interaction; Multi-Touch input; Micro-movements

INTRODUCTION
TouchTokens [9] provide a simple means to develop tangible
interfaces. The approach relies on easy-to-make passive to-
kens that feature notches constraining how users grasp them.
Manipulating the tokens while maintaining the fingers in con-
tact with the touch-sensitive surface leads to specific multi-
touch spatial patterns that can be uniquely identified using a
relatively simple software recognizer. However, users are lim-
ited in how they can manipulate these tokens, as is often the
case with approaches based on capacitive sensing.

In this article, we aim at increasing the expressive power of
TouchTokens by making the system able to detect: 1) when a
token is left on or lifted off the surface, 2) when it is squeezed
and 3) when it is bent. We achieve this without introducing
any kind of instrumentation, thus preserving the simplicity
of the original approach, which relies exclusively on passive
tokens, and which works with any off-the-shelf capacitive sur-
face. Our solution relies on the hardware side on making
Rafael Morales González, Caroline Appert, Gilles Bailly & Emmanuel
Pietriga. Passive yet Expressive TouchTokens. In CHI ’17: Proceedings
of the 35th Annual ACM Conference on Human Factors in Computing
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the tokens flexible by introducing lattice-hinges in their de-
sign, and on the software side on a novel recognizer that ana-
lyzes the micro-movements of the token-holding fingers that
remain in contact with the surface.

After a short overview of related work, we describe the design
of our flexible tokens, based on lattice hinges which can easily
be obtained using fabrication processes such as laser cutting.
We then report on a formative study in which we collected a
sample of finger micro-movements that are representative of
the manipulations afforded by our flexible tokens. Finally, we
describe our recognizer, and evaluate its performance.

RELATED WORK
The most common approach to enabling tangible interaction
on surfaces that use diffuse illumination technology consists
in augmenting the objects with fiducial markers, and using
a vision-based algorithm to identify them and track their lo-
cation (see, e.g., [5]). Other projects have investigated tan-
gibles that reflect incoming light to the surface in a specific
way in order to support more manipulations, such as TZee
tangibles [14], which have the shape of a truncated pyramid
and support gesturing on their sides, or Lumino blocks [1],
which can be stacked. Diffuse illumination is a solution that
is usually reserved to large setups such as tabletops.

Another approach involves augmenting tangibles with mag-
nets. When coupled with a force-resistive screen, the system
can detect pressure and gestures performed on top of the to-
kens [6]. When coupled with a surface augmented with a
Hall sensor grid, the system can track tokens hovering over
the surface [8]. GaussBricks [7], which also rely on a display
equipped with Hall sensors, are bricks that can be assembled
together to create larger objects featuring both deformable
and rigid parts. While this approach enables very rich interac-
tions, it requires augmenting the surface with specific sensors,
and ensuring that the device’s environment is free of any fer-
rous object that could interfere with the tangibles’ magnetic
field.

Solutions based on capacitive sensing are more affordable,
but usually more limited. The system will often only be able
to track the tokens that users are touching. There are, how-
ever, a few exceptions that go beyond these limitations. Cap-
Stones and ZebraWidgets [3] are capacitive units that can be
assembled to configure different conductive circuits, enabling
more manipulations with the tangibles that can, for example,
be stacked or feature moving parts. PUCs [13] widgets rely
on the principle of mutual capacitance so as to be detected
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CONCLUSION
As discussed in [9], TouchTokens can play different roles in
an application. They can be used to control parameters or fil-
ter data in a visualization. They can be used as controllers in
games, as data receptacles to hold any kind of content, and
even as an access control mechanism. Our new events en-
able developing more powerful interfaces where tokens can
be dragged (squeeze) or clicked (bent, squeezed), and where
several tokens can be laid on the surface (on/off enabling the
system to keep track of them). This extended vocabulary can
be used for different purposes, such as concurrently activating
several filters, invoking commands on specific items or trans-
ferring data using drag-and-drop, click actions or contextual
controls that take the tokens’ relative layout into account.
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Figure 1. LeviProp provides a design method for creating levitated props combining a light piece of fabric with attached anchor 
beads: (a) We input the outline design and animation constraints (i.e. moving parts and rotations); (b) Our novel algorithm optimizes 
the location of the anchor beads on the fabric, obtaining maximum trapping forces on the structure (c) The final design is easy to 
build with a laser cutter; and (D) can be levitated in an interactive way. 

ABSTRACT 

LeviProps are tangible structures used to create interactive 
mid-air experiences. They are composed of an acoustically-
transparent lightweight piece of fabric and attached beads 
that act as levitated anchors. This combination enables real-
time 6 Degrees-of-Freedom control of levitated structures 
which are larger and more diverse than those possible with 
previous acoustic manipulation techniques. LeviProps can be 
used as free-form interactive elements and as projection 
surfaces. We developed an authoring tool to support the 
creation of LeviProps. Our tool considers the outline of the 
prop and the user constraints to compute the optimum 
locations for the anchors (i.e. maximizing trapping forces), 
increasing prop stability and maximum size. The tool 
produces a final LeviProp design which can be fabricated 
following a simple procedure. This paper explains and 
evaluates our approach and showcases example applications, 
such as interactive storytelling, games and mid-air displays. 
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Levitation, design methods, tools, fabrication, mid-air UIs. 
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INTRODUCTION 
The idea of controlling matter to create advanced user 
interfaces has inspired HCI research, from concepts like the 
Ultimate display [30] to Radical Atoms [11]. 
Magnetophoresis [12] has been explored as a method for 
contactless control of matter. Ultrasonic levitation is another 
method [2,9,24,34] that has received significant attention for 
several reasons: a) no specific physical properties (e.g. 
ferromagnetic or dielectric) are required for the manipulated 
matter, allowing manipulation of materials ranging from 
polystyrene beads to coloured liquids [8,25], or even food 
[32]; b) it is low-cost compared to optical manipulation [14]; 
c) it is not harmful for the human health [3]; d) can reach tens 
of centimetres [6]; and e) it can manipulate multiple particles 
with fine control on the position [17]. However, apart from 
some exceptions which require high-power and can control 
only one particle [1,7,10,15], acoustic techniques are limited 
to small spherical particles (i.e. ~2mm) and shapes made of 
points, greatly limiting their expressiveness as interfaces. 

This paper presents LeviProps, which are tangible levitated 
props created by combining lightweight and acoustically-
transparent fabric (e.g. Super Organza) with attached 
polystyrene beads. The fabric provides a continuous and 
free-form 2D surface, adding to its expressiveness or even 
acting as optical diffusers for mid-air displays. The beads act 
as levitated anchors that support the fabric and enable 
dynamic control of the props. LeviProps can be manipulated 
in mid-air with up to 6 Degrees-of-freedom (DoF) and be 
composed of multiple moving parts called levitation 
primitives. A primitive is a set of one or more beads attached 
to the fabric that retain their relative position (i.e. move and 
rotate together). Primitives can be animated independently, 
e.g. the butterfly in Figure 1d is composed of 3 primitives: 
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Figure 1: UltraPower uses focused ultrasound to wirelessly transfer power to components in tangible and wearable devices (a):
e.g., lights in a tabletop tangible object (b), loudspeakers on a physical object (c), and vibration motors in wearable devices (d).

ABSTRACT
Wireless power transfer creates new opportunities for interaction
with tangible and wearable devices, by freeing designers from the
constraints of an integrated power source. We explore the use of
focused ultrasound as a means of transferring power to a distal
device, transforming passive props into dynamic active objects.
We analyse the ability to transfer power from an ultrasound array
commonly used for mid-air haptic feedback and investigate the
practical challenges of ultrasonic power transfer (e.g., receiving and
rectifying energy from sound waves). We also explore the ability
to power electronic components and multimodal actuators such as
lights, speakers and motors. Finally, we describe exemplar wearable
and tangible device prototypes that are activated by UltraPower ,
illustrating the potential applications of this novel technology.
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1 INTRODUCTION
Power is a crucial requirement for almost every interactive com-
puting device. Provision of power has a signi�cant impact on the
device form factor and use: batteries need to be integrated, charged
or replaced, whereas wired alternatives may constrain the range of
interactions with the device. Moreover, power integration continues
to a�ect a device after its functional life-cycle has ended as it can
prevent or increase the cost of its recycling. To that end, wireless
power transfer (WPT) is an appealing alternative, pioneered by N.
Tesla in the 1890s, whereby power is transferred without physical
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