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Figure 1. TOUCHTOKENS are passive tokens that guide users’ fingers to specific spatial configurations, resulting in distinguishable touch patterns.

ABSTRACT
TOUCHTOKENS make it possible to easily build interfaces
that combine tangible and gestural input using passive tokens
and a regular multi-touch surface. The tokens constrain users’
grasp, and thus, the relative spatial configuration of fingers
on the surface, theoretically making it possible to design al-
gorithms that can recognize the resulting touch patterns. We
performed a formative user study to collect and analyze touch
patterns with tokens of varying shape and size. The analysis
of this pattern collection showed that individual users have
a consistent grasp for each token, but that this grasp is user-
dependent and that different grasp strategies can lead to con-
founding patterns. We thus designed a second set of tokens
featuring notches that constrain users’ grasp. Our recognition
algorithm can classify the resulting patterns with a high level
of accuracy (>95%) without any training, enabling applica-
tion designers to associate rich touch input vocabularies with
command triggers and parameter controls.
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INTRODUCTION
The main characteristics of multi-touch gestures performed
on the capacitive screens that typically equip tablets, smart-
phones, touchpads, as well as some tabletops, are the num-
ber of fingers involved and the individual trajectories of those
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fingers. Examples include 2- or 3-finger slide, and 2-finger
pinch. But to the exception of a few research projects that
consider touch points as chords [19, 21], interactive systems
ignore the relative spatial configuration of contact points;
what we call a touch pattern.

Our goal is to enable users to perform gestures based on a set
of distinct touch patterns, thereby increasing the richness of
input vocabularies for tactile surfaces. Our approach relies on
physical guidance, as it would be unrealistic to expect touch
patterns to be executed consistently across users, or even over
time by the same user. As the literature suggests that users
adopt grasp strategies that depend on the object to manipu-
late [39, 47], we investigate the potential of tangible tokens
held on the surface to act as physical guides constraining the
relative position of users’ fingers.

We present TOUCHTOKENS, a novel interaction technique
based on a set of easy-to-make passive tokens and a fast and
simple recognition algorithm that can discriminate the unique
touch pattern associated with each token in the set.1 The ap-
proach features several advantages. First, physical tokens can
provide space-multiplexed input by associating different con-
trollers with different functions [18]. Second, tokens can alle-
viate issues related to discovery, exploration and learning in-
herent to gesture-based interaction [56]. Finally, tokens pro-
vide haptic feedback that promotes eyes-free interaction [28].

TOUCHTOKENS make it easy to implement applications that
combine multi-touch and tangible input at low cost. Such a
combination has the potential to foster collaboration, support
distributed cognition, and enhance the user experience [1, 29,
46]. As opposed to other tangible systems that require elec-
tronic instrumentation (e.g., [9, 34]) or specific conductive
material (e.g., [17, 33]), our system relies on an algorithm

1Implementations of the algorithm and vector descriptions of the
tokens ready for 3D-printing or laser-cutting are available at
https://www.lri.fr/~appert/touchtokens/.
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that relies on standard multi-touch APIs and on passive tokens
thats can be made of any non-conductive material, including
wood or transparent acrylic.

We performed a formative user study to collect touch pat-
terns, in which participants had to grasp and manipulate a set
of twelve tokens of varying shape and size on a tabletop sur-
face. The analysis of this pattern collection showed that peo-
ple grasp the same token consistently across trials, but that it
is quite difficult to identify a set of tokens and to design a ro-
bust recognition algorithm that works for all users. The two
main sources of confusion are that different users may adopt
different grasp strategies for the same token, and that one user
may adopt the same strategy for distinct tokens. Based on
these observations, we designed a second set of six tokens
featuring notches that constrain users’ grasp. These notches
are designed to ensure a comfortable grasp while serving two
purposes: 1) minimizing, for a given token, the variability of
the contact points’ relative position; and 2) maximizing the
distinctiveness of touch patterns. We performed a summative
study in which participants had to grasp and manipulate this
set of tokens on both a tabletop and a tablet. Results show
that our algorithm recognizes these touch patterns with an ac-
curacy higher than 95%, and does so without any training
or calibration. Application designers can map the gestures
performed with these tokens to any command or parameter
control, as illustrated in the examples introduced before the
concluding discussion about limitations and future work.

RELATED WORK
TOUCHTOKENS makes use of physical tokens to augment the
power of expression of multi-touch input, building upon tan-
gible interaction and touch input research. Our review of re-
lated work is structured accordingly, giving an overview of
projects that considered tangible tokens above interactive sur-
faces, or leveraged the power of expression of touch input.

Tangible tokens for tactile surfaces
Some tactile surfaces rely on diffuse illumination, which
makes it possible to recognize both objects and hands in con-
tact with the surface, using computer-vision algorithms to an-
alyze the frames captured by IR cameras. Such techniques
have been used, e.g., to track mice and keyboards [24] or to
design physical widgets [50]. The Conté tool [49] is an artis-
tic crayon that consists of an acrylic block that emits and re-
flects IR light. When tethered, its location and orientation can
be tracked on diffuse illumination surfaces. Several projects
rely on fiducial markers to ease the image-based analysis,
such as the ReacTable [30, 31], which offers a tangible envi-
ronment for music composition. Tokens can also be stacked
on top of one another, using fiducial markers with transparent
areas [3] or optical fiber bundles [5] to track them. Diffuse
illumination hardware setups are somewhat bulky, however,
and are thus mostly used for large surfaces such as tabletops.

Most touchscreens are capacitive: they detect a drop in capac-
itance when one or more fingers touch them. Various projects
have investigated conductive objects. These objects contain a
circuit of conductive material that links the areas that are in
contact with the user’s fingers to the areas that are in contact

with the capacitive surface (the object’s “feet"). As soon as
the user touches an object, its feet become grounded and gen-
erate a drop in capacitance similar to a multi-touch pattern.
Physical widgets [33] rely on this technique, as do physical
button pads that can be clipped to the edges of a device [55],
or more advanced objects that feature moving parts [17, 28]
or that can be stacked [17]. Designing conductive tokens is
challenging: the feet must be positioned carefully and the cir-
cuit must be stable so that the generated touch pattern can
be recognized consistently. As capacitive screens have been
designed for human fingers, properties such as the feet’s min-
imal size and the minimal distance between two feet, which
depend on the device, must be carefully chosen [55].

Other projects have explored more cost-effective ways of
building conductive objects. Wiethoff et al. [51] use card-
board and conductive ink. This works well for low fidelity
prototyping, but does not scale with real usages. Blagoje-
vic et al. [11] report on a design experience where they have
built a small set of geometric tools (ruler, protractor and set
square) for a tabletop drawing application. They tested dif-
ferent construction strategies by combining different low-cost
conductive materials (e.g., conductive ink, conductive foam,
aluminium tape, copper wires). Their experience shows that
making a physical tool conductive is quite difficult, as many
factors have to be considered (consistent circuit, stability,
friction with the screen, good grasp, etc.). In the end, the
best design consisted of drilling holes in the tool and using
conductive foam to cover the tool and fill the holes. In the
panorama of capacitive tokens, PUCs [48] are an exception:
they rely on the principle of mutual capacitance so as to be
detected even when users do not touch them. However, most
systems have to be augmented with an additional calibration
clip to cheat the implemented adaptive filtering that tends to
interfere with the PUCs’ detection.

Some tangible systems work with magnetic tokens that mod-
ify the magnetic field incoming to the magnetometer built in
mobile devices [8]. However, as a magnetometer reflects the
sum of the magnetic fields it senses, supporting multiple to-
kens requires putting more than a simple magnet inside the to-
kens. Bianchi and Oakley [9] propose to use a more elaborate
electronic system that features a motor to make the mounted
magnet spin at a specific frequency. Putting a grid of Hall
sensors behind the surface, Liang et al. [34] get a 2D image
of the magnetic field that can be analyzed to track the location
and orientation of objects above the surface. Each object can
also be shielded with a case made of galvanized steel to avoid
attraction and repellence effects between several tokens [35].

Multi-touch input and power of expression
Researchers have considered several avenues to increase the
power of expression of touch input, including finger identifi-
cation, finger pressure, or finger impact in order to multiplex
input by assigning one command per finger, pressure level, or
impacting zone. Finger identification relies on pattern recog-
nition techniques coupled with advanced sensors such as fin-
gerprint scanners [43] or fiber optic plates [27]. Projects such
as SimPress [7] or FatThumb [12] capture the size of the fin-
ger’s contact area and assign two different meanings to a soft



tap and a hard tap. It is even possible to capture both the
normal and tangential components of the force applied on the
surface using extra pressure sensors [25]. Identification and
amount of pressure of the finger in contact can also be as-
sessed by classifying muscle activity in the forearm [6]. Fi-
nally, TapSense [22] discriminates which part of the finger
(nail, knuckle, pad or tip) hits the surface by using acous-
tic sensing. With the exceptions of SimPress and FatThumb,
that capture two pressure levels based on the size of the con-
tact area, all of the above techniques rely on tactile surfaces
that are augmented with additional sensors.

Some systems make use of whole-hand gestures (e.g., hori-
zontal vs. vertical hand, straight vs. curved hand) for ma-
nipulating virtual objects [16, 40, 52, 53], or invoking virtual
tools by mimicking the hold of their physical counterparts [4,
23]. Most of these projects rely on tactile surfaces that give
access to the shape of the whole contact region, and cannot
run on regular capacitive surfaces, which have been devel-
oped for finger input and consequently deliver standard point-
based multi-touch coordinates only. One notable exception is
the TouchTools system [23] that uses machine learning to rec-
ognize up to seven touch patterns associated with seven hand
postures on a capacitive screen. A few systems can also rec-
ognize chord gestures. Finger-Count [2] counts the number
of contact points on the surface. Arpège [21] supports more
chords by relying on the contact points’ relative position. The
technique requires per-user calibration to record the fingers’
natural position when the hand rests in a comfortable posture.

TOUCHTOKENS take a different approach and does not make
the assumption that the fingers’ relative position is always the
same. The technique relies on different relative finger posi-
tions that users would adopt naturally when grasping a tan-
gible token on a surface. Recognizing typical hand postures
when people grasp objects has been investigated in experi-
mental psychology to identify everyday objects and then in-
fer users’ activities (such as holding a mug or typing at the
keyboard) [39]. Experimental studies show that it is possi-
ble to distinguish objects that differ in their size [14], shape
(e.g., cylinder, pyramid, etc.) [42] or both [39, 47]. However,
these studies assume that the system provides access to the
whole hand posture, using advanced motion capture systems
that can provide the position and orientation of all hand joints.

TOUCHTOKEN
The primary objective of TOUCHTOKENS is to guide the reg-
istration pose [19] of multi-touch gestures on an interactive
surface. TOUCHTOKENS take advantage of users’ ability to
grab physical objects in the real word. Our idea is that the ge-
ometry (shape and size) of an object impacts how users grab
it. Different objects will thus have different touch patterns on
the tactile surface, which can be discriminated. Touch pat-
terns are recognized at registration and remain active until all
contact points have left the surface. In particular, users can
relax their grasp in the execution phase of their gesture [54],
thus reducing finger occlusion and enabling a larger range of
motion. In this section, we describe how to build a system
based on TOUCHTOKENS. Applications and limitations of
the approach are discussed at the end of the paper.

Fabrication
TOUCHTOKENS require neither embedding electronics in
the tokens nor augmenting the tactile surface with addi-
tional hardware (such as, e.g., a computer vision system),
which makes setup easy. Tokens can be built from any non-
conductive material such as wood, plastic, metal or glass,
since the system only relies on the fingers’ relative position,
which is already provided by the tactile surface. This flexi-
bility allows designers to easily prototype and test different
TOUCHTOKENS variants with a 3D printer or a laser cutter.
In particular, designers have a lot of control on the tokens’
appearance. For tokens that have permanent roles associated
with them, interface designers can engrave an icon or a label
on them, or use a specific color. For temporary associations,
end-users could adopt more volatile solutions, such as adding
stickers or writing with an erasable pen if the chosen material
affords it (e.g., pencil on a wooden token). Tokens can also
be made of transparent material such as glass or acrylic, to
avoid occluding the content displayed on the tactile surface.

Recognition
When grabbing a token with more than two fingers in con-
tact with the surface, TOUCHTOKENS can infer its identity,
and thus the corresponding registration pose, from the rela-
tive spatial configuration of the touch points. The recognition
engine is initialized with one or more typical touch patterns
per token and, when a touch pattern of at least three points
occurs, the algorithm computes the distance between this in-
put pattern and the set of template patterns. The recognized
token is the one associated with the template that minimizes
this distance metric.

Computing the distance between two touch patterns (input
I:{I1, ..., In} and template T :{T1, ...,Tn}) is not straightforward,
however. First, most tactile surfaces do not provide finger
identification. Second, tokens have an arbitrary orientation on
the surface. Figure 2 illustrates how our algorithm processes
touch patterns in order to identify the best alignment between
the reference template and actual input patterns, from which
the distance is computed.

The key steps for identifying the best alignment are as fol-
lows: (1) compute the centroid CI of the three (or more) touch
points; (2) generate all sequences of touchpoint labels (per-
mutations) so that their IDs always appear in counterclock-
wise order; (3) rotate all these touch patterns so as to align
vector

���!
CI I1 with the x-axis. (4) The algorithm then translates

touch patterns to align the input (CI) and template (CT ) cen-
troids. (5) It finally pairs the points in the permutation with
the template’s points in order to compute the distance, simply
by summing all distances between paired points. The dis-
tance between reference template and actual input is given by
the best input alignment, which is the permutation that mini-
mizes this distance metric.

A typical implementation of the recognition engine amounts
to about a hundred lines of code, and will work on any capac-
itive surface. The engine relies on simple geometrical fea-
tures, which makes it easier to understand recognition errors
compared to less transparent techniques such as those based
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Figure 2. Template and input touch pattern alignment process.

on machine learning, that work as black boxes. The algorithm
is very fast: recognition time scales linearly with the number
of candidate templates. A Java implementation will be made
available publicly, featuring both TUIO and Android APIs2.

REGULAR TOKENS
TOUCHTOKENS rely on the hypothesis that the geometry of
tokens impacts how users grasp them, resulting in distin-
guishable touch patterns. In order to test this hypothesis and
identify a set of tokens that can actually be discriminated, we
first ran a formative study in which participants had to grasp
a set of twelve tokens that vary in shape and size.

Experiment design
Token Set
We selected a set of 4 ⇥ 3 = 12 tokens (Figure 3) that vary
in their shape (square, circle, rectangle, and triangle) and size
(3cm, 4cm and 5cm). The choice of size was informed by
informal tests, taking into account both human and techno-
logical constraints. The tokens should remain comfortable to
grasp with at least three fingers, which entails bio-mechanical
constraints on the minimum and maximum token size. Ca-
pacitive surfaces also impose a minimal distance between fin-
ger tips, which will be seen as a single point if too close to one
another. Our tokens are made of wood and are 6mm thick. We
had initially considered tokens 3mm thick, but those were too
difficult to grab. The tokens’ corners are also slightly rounded
so as to avoid sharp wedges that could have hurt participants.

Types of interaction
Participants are seated in front of the tabletop (at the center of
the long edge) and perform a series of trials with the different
tokens (Figure 4). As illustrated in Figure 5, the graphical
display always features a progress bar in the top-left corner
and a picture of the token to use in the current trial in the top-
right corner. The action to be done with the token depends
on the type of interaction (INTERACTION). The Global con-
dition operationalizes the case where users invoke a global
command with the token (e.g., launching an app); the Local
2It is part of the earlier-mentioned supplemental material made
available to reviewers.
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Figure 3. Set of tokens used in the first study (size 2 3cm, 4cm, 5cm).

Figure 4. Experimental setup.

condition corresponds to the case where users apply a com-
mand at a specific location on screen (e.g., copying a graph-
ical object); and the Path condition captures the case where
users invoke a command and set its parameter value with a
gesture (e.g., adjusting the opacity of a layer in a visualiza-
tion). The progress bar indicates for how long participants
have dwelled. It starts filling-in as soon as a stable touch pat-
tern is detected on the surface. The dwell’s duration depends
on the type of interaction. If the number of fingers in contact
changes, or if the touch pattern’s centroid drifts away from
its initial position by more than 30 pixels, the progress bar is
reset and participants have to perform the trial again.

The experiment was divided into three phases, one per IN-
TERACTION condition, always presented in the same order:

1. In the first phase (INTERACTION = Global), participants
have to select the right token, put it anywhere on the table-
top, hold it with at least three fingers, and hold still for at
least 1 second.
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Figure 6. In the INTERACTION = Local condition, participants have to
put the token at a specific location (LOCATION 2 0�, 45�, 90�, 135�, 180�).

2. In the second phase (INTERACTION = Local), participants
have to select the right token, put it on the cross (Figure 6),
holding it still with at least three fingers for at least 1 sec-
ond. The cross can be in five different LOCATION. These
locations are chosen on a semi-circle roughly centered on
the participant as in [38] (see Figure 6), as the token’s lo-
cation on the surface (relative to the participant) may in-
fluence the neutral hand posture and thus how the token is
grasped. The distance between the touch pattern’s centroid
and the center of the cross must be at most 50px. If this dis-
tance is greater, the progress bar turns red and participants
must perform the trial again.

3. In the third phase (INTERACTION = Path), participants
must hold the token still with at least three fingers for a
short period of 100ms. The background turns from gray to
white. Participants then have to slide the token along the
path indicated by purple arrows. In this condition, partic-
ipants can plan a manipulation with the token, which may
influence their initial grasp [38]. When sliding the token,
they can lift some fingers but must keep at least one finger
in contact with the surface. If they lift all fingers before
having performed the whole gesture, the background turns
back to gray and they have to start again. Figure 7 shows
the six types of paths that participants had to follow with
each token. We chose these tasks based on the taxonomy
of multi-touch gestures from [37]. For external circular
gestures (Ext-CCW and Ext-CW), participants have to slide
the token along a clockwise or counterclockwise circular
path. As soon as the touch pattern’s centroid has completed
one full circle, the background turns green and participants
can proceed to the next trial. For internal circular gestures

Ext-CCW Ext-CW

350px

Int-CCW Int-CW

Lin-Left Lin-Right

750px

Figure 7. In the INTERACTION = Path condition, the participant has to
put the token on the surface and slide it along a specific path (PATH 2
{Ext-CCW, Ext-CW, Int-CCW, Int-CW, Lin-Left, Lin-Right}).

(Int-CCW and Int-CW), participants have to rotate the to-
ken around its center, as they would do with a physical
circular knob. As soon as the touch pattern has been ro-
tated by at least 45� around its centroid, the background
turns green to indicate that the trial has been successfully
completed. Finally, for linear gestures (Lin-Left and Lin-
Right), participants simply have to slide the token to match
the amplitude and direction indicated by the arrow.

Participants and Apparatus
Twelve volunteers (3 female), aged 23 to 33 year-old (aver-
age 26.5, median 25.5), participated in the experiment. The
experiment software was running in full screen mode on a
3M C3266P6 capacitive screen (display dimensions: 698.4 x
392.85 mm, resolution: 1920 x 1080 pixels) placed horizon-
tally on a desk (Figure 4). A digital video camera on a tripod
recorded participants’ hand and arm movements. The exper-
imental software was developed in Java 2D (JDK 7) and ran
on a Mac Pro 2.8 GHz Intel Quad Core with 16GB memory,
running Mac OS X 10.7.5.

Procedure
Participants are seated at the center of the long side of the
tabletop. They receive instructions detailing the goal of the
experiment and the different experimental tasks they will



have to perform. In particular, the operator initially informs
participants that the goal is to design a system that is able to
recognize tokens based on users’ grasp. He encourages them
to be consistent in their grasp across trials with tokens that
have the same shape. In order to identify which grasp is com-
fortable, the operator gives participants four tokens, one per
shape with size = 4cm (Square4, Circle4, Rectangle4 and Tri-
angle4), and asks them to manipulate each token a bit on the
surface in order to choose a comfortable grasp. The operator
then notes this grasp in his logs and the experiment starts.

As mentioned above, the experiment consists of three phases
that are always presented in the same order:

• Phase 1 (INTERACTION = Global): 12 TOKEN ⇥ 5 repeti-
tions = 60 trials. In this phase, the presentation order for
the trials is randomized in order to observe if people are
actually able to grasp the same token consistently across
different trials that are not consecutive. To minimize the
visual search time associated with identifying the right to-
ken to take, the operator printed 5 copies of each individual
token and initially sorted the 60 tokens on the table, on the
right side of the screen (Figure 4).

• Phase 2 (INTERACTION = Local): 12 TOKEN ⇥ 5 LOCA-
TION ⇥ 2 repetitions = 120 trials. The order of TOKEN ⇥
LOCATION is randomized across participants. The 2 rep-
etitions per TOKEN ⇥ LOCATION condition are presented
one after another to limit the length of the experiment.

• Phase 3 (INTERACTION = Path): 12 TOKEN ⇥ 6 GESTURE
⇥ 2 repetitions = 144 trials. As in phase 2, the order of TO-
KEN ⇥ GESTURE conditions is randomized across partici-
pants, with the 2 repetitions presented one after another.

After completion of these three phases, participants receive
a questionnaire where they have to give a comfort score for
each of the twelve tokens. The questionnaire features 12
Likert-scale type questions where participants have to give
a rating between 0 (not comfortable to grasp at all) to 5 (very
comfortable). The overall procedure lasted about an hour.

Results
We first tested if participants’ grasps of the different tokens
can be distinguished using the recognition strategy described
in the previous section. To that end, we train our recognition
algorithm using the first three trials of Phase 1 as templates
for each token. This training strategy corresponds to what a
system relying on a light training phase would require.3 We
then evaluate our algorithm on the remaining trials, i.e., (2 ⇥
12 + 2 ⇥ 12 ⇥ 5 + 2 ⇥ 12 ⇥ 6) ⇥ 12 participant = 3456 trials.

A �2 analysis reveals that both INTERACTION (�2(2,N =

3456) = 12, p = 0.002, � = 0.06) and TOKEN (�2(11,N = 3456) =
109, p < 0.001, � = 0.18) have a significant effect on RECOG-
NITION RATE. Figure 8 illustrates the observed differences
between conditions. A finer analysis of TOKEN’s effect on
RECOGNITION RATE per INTERACTION shows that TOKEN

3We tested our algorithm with different training strategies to accom-
modate more variability (e.g., considering templates picked from
the three experiment phases) but there was no clear gain compared
against the training cost it would entail for end-users.

0

25

50

75

100

Global Local Path
Interaction

R
ec

og
ni

tio
n 

ra
te

0

25

50

75

100

C
i_

3
C

i_
4

C
i_

5
R

e_
3

R
e_

4
R

e_
5

Sq
_3

Sq
_4

Sq
_5

Tr
_3

Tr
_4

Tr
_5

Token

R
ec

og
ni

tio
n 

ra
te

Figure 8. Recognition rate per INTERACTION (left) and per TOKEN
(right). Error bars represent the 95% confidence interval.

has a significant effect on RECOGNITION RATE in all INTER-
ACTION conditions (Global: �2(2,N = 288) = 25, p = 0.009, � =
0.3, Local: �2(2,N = 1440) = 58, p < 0.001, � = 0.2 and Path:
�2(2,N = 1728) = 85, p < 0.001, � = 0.2). The effect of sec-
ondary factors (LOCATION for Local and GESTURE for Path)
on RECOGNITION RATE is not significant (p = 0.4 and p = 0.2).

We then wanted to investigate the impact of the token sub-
set’s size on recognition rate. In order to identify the largest
number of grasps that can be accurately discriminated for
each participant, we computed all possible subsets of tokens
among the initial set of 12. The total number of subsets com-
prising at least two tokens (TOKENCOUNT >= 2) is:

12X

TokenCount=2

 
12

TokenCount

!
= 212 � 12 � 1 = 4083

For each subset, we ran our recognition algorithm with the
same training strategy (only the first three trials from exper-
iment phase INTERACTION = Global) in order to compute,
for this subset, the recognition rate per participant. We ob-
serve that the per-subset recognition rate across participants
exhibits a very high variability. For example, if we consider
subsets that have 7 tokens (TOKENCOUNT = 7), the “worst”
subset has a recognition rate of 63% on average across partic-
ipants (worst-performing participant: 31%, best-performing
participant: 98%), while the “best” subset has a recognition
rate of 81% on average across participants (worst-performing
participant: 57%, best-performing participant: 100%).

Recognition rate per participant
In order to test how many distinguishable grasps can be
recognized per participant, we report the maximal recog-
nition rate for each value of TOKENCOUNT 2 {2, ..., 12}.
If a participant P gets a maximal recognition rate R for
TOKENCOUNT=N, this means that there exists at least one
set of N tokens that are recognized with R% accuracy on aver-
age for participant P. Figure 9 reports these recognition rates
for the best-performing and worst-performing participants, as
well as the average over all participants. The charts illustrate
that our algorithm can accurately discriminate a high number
of grasps for some participants (the best-performing partic-
ipant has a recognition accuracy higher than 90% for up to
10 tokens in all INTERACTION conditions), while it performs
quite poorly for others (the worst-performing participant has
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Figure 9. Recognition rate per INTERACTION ⇥ TOKEN

Participant #1 Participant #9

Triangle4 Triangle4
Figure 10. Touch patterns (aligned by our algorithm) for a participant
who adopts very consistent grasps for token Triangle4 (left) and for a
participant who adopts varying grasps (right). Red dots belong to touch
patterns that are used as templates.

a recognition accuracy lower than 90% even for sets of only
three tokens in condition INTERACTION = Path). This vari-
ability comes from two sources: intra-grasp variability and
inter-grasp similarity.

Figure 10 displays the 27 touch patterns we have collected
for Triangle4 for two participants. It illustrates two extreme
levels of intra-grasp variability. Participant 1 (left) grasps
token Triangle4 in a very consistent manner, while Partici-
pant 9 (right) demonstrates much more variation in how he
grasps it, challenging our recognition strategy. The second
source of confusion comes from inter-grasp similarity: if
a user chooses one grasp strategy for a given token that is
very similar to the one he uses for another token in terms of
similarity of the touch patterns, the two tokens will get con-
founded. Together, these two phenomena explain why we ob-
serve such a large variability across participants regarding the
composition of the token sets that are recognized accurately.

Recognition rate between participants
Figure 9 reports the best set of tokens for each participant,
and thus does not reflect the fact that the same subset of to-
kens can be very accurately recognized for one participant
while it will be poorly recognized for another participant. We
report the biggest sets of tokens that reach consensus among
all our participants below (i.e., the sets of tokens that have a
recognition accuracy of at least 90% for all participants):

• for INTERACTION=Global, we find 6 sets of 5 tokens ;

• for INTERACTION=Local, we find 13 sets of 3 tokens ;

• for INTERACTION=Path, we find 6 pairs of tokens ;

6 participants 4 participants 2 participants

5 participants 4 participants 3 participants

12 participants 10 participants 2 participants

S1 S2 S3

R2R1 R3

T1
C T2

Figure 11. The nine grasp strategies observed in Experiment 1

• for all INTERACTION conditions undifferentiated, we find
8 sets of 3 tokens with an average of at least 90% accuracy
for all participants.

Grasp strategies
Figure 11 summarizes the different grasp strategies that par-
ticipants adopted for the different token shapes (extracted
from an analysis of the operator’s logs and video sequences
recorded during the experiment). We observed that all partic-
ipants use the same strategy for circles (C). Squares and rect-
angles receive less consensus, with three different strategies
observed for each of them. The main strategy for squares uses
three edges (S 1; 6/12). The two other strategies use only two
edges, and differ in the distance between the two fingers on
the same edge: small (S 2; 4/12) or large (S 3; 2/12). For rect-
angles, one strategy uses the two long edges only (R1; 5/12).
The two other strategies use three edges: two contact points
on the short edges (R2; 4/12) or on the long edges (R3; 3/12).
One of the grasp strategy for triangles makes use of a cor-
ner (T2; 2/12), which was quite surprising. Two participants
adopted it, but actually rated it as very uncomfortable.

To understand what kind of confusions occur in the recogni-
tion process, we implemented a visualization that displays all
collected touch patterns using the best alignment computed
by our recognition algorithm (Figure 10 was built with this
tool). We computed the confusion matrix by considering the
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Figure 12. Comfort score per token. Error bars represent the 95% con-
fidence interval.

42O

Triangle 5cm Circle 4cm

Rectangle 5cm Square 5cm

Square 4cm

42O

Circle 5cm
5mm

notch center

touch point in 
universal template

(a) (b)

Figure 13. (a) The 6 tokens with notches. (b) The touch point’s location
in the template is offset by 5mm along the normal to the token’s edge.

27 types of touch patterns (3 size ⇥ 9 grasp strategies). The
visualization tool was a good complement to the confusion
matrix as (1) some confusions do not appear in the matrix
if a template for one token is too close to a template for an-
other token; and (2) the different grasp strategies were not
adopted the same number of times, leading to numbers in the
confusion matrix that could not be compared in an absolute
manner. From this analysis, we draw a few take-away mes-
sages. The flat isosceles triangle of grasp strategy R2 is very
representative and well-recognized. T2 is also representative,
but is too uncomfortable to be further considered. In contrast,
some postures are difficult to distinguish. For instance, touch
patterns R1 and R3 often form an equilateral triangle similar
to the one of T1. Finally, S 1 and C can also cause confusions.

TOKENS WITH NOTCHES
Our foundational hypothesis was that physical tokens con-
strain users’ grasp in a consistent manner, which leads to
consistent touch patterns that can be recognized with a high
level of accuracy. The results of our formative experiment re-
vealed that our hypothesis was only verified for some partici-
pants. We also observed significant variations in grasp strate-
gies among users, which means that a set of tokens that works
well for one user might not work so well for another user. As
we aim at devising a solution that works effectively for all
users in a consistent manner, we investigated a solution to
decrease the different sources of variability.

We designed a new set of tokens, illustrated in Figure 13, sim-
ilar to those considered in the formative study, but that feature
notches. The purpose of these notches is to afford a particular

Figure 14. Experimental setup in the Tablet condition.

grasp strategy, i.e., to suggest a specific way of positioning
the fingers to grab a given token. The design of these tokens
was guided by the following requirements. We wanted the to-
ken set to feature a wide range of shapes, as tokens should be
easy to identify by visual and tactual perception [36]. Sets
that feature different shapes also provide better mnemonic
cues, making it easier for users to remember token-command
associations. Finally, the tokens should remain comfortable
to grasp. Based on these requirements, we picked the most
comfortable size for each shape (5cm), and added the circular
and square tokens of 4cm, which were also rated as very com-
fortable (Figure 12). We limited our summative study to this
set of six tokens which, together with all token manipulation
gestures, already provides a rich input vocabulary.

The grasp strategies observed during our formative experi-
ment (Figure 11) informed the positioning of notches on to-
ken shapes. The notches’ dimensions were refined through
trial and error: narrow and deep notches introduce corners
under finger tips, which make them uncomfortable; large and
shallow notches are more comfortable, but introduce tangen-
tial variability in finger position. Our final design tries to
strike a balance, and consists of notches 15mm wide and
1.5mm deep. Tokens whose shape afforded variable grasp
strategies in the previous experiment feature a dot that indi-
cates where to put the thumb, as illustrated in Figure 13-a.

These new tokens are designed to strongly constrain how
users grasp them. We hypothesize that this will result in
significantly reduced level of variability, which should en-
able our approach to work without any training. For each
token, we compute a representative touch pattern that will act
as a universal template for all users. The touch pattern is
derived from the notches’ position, slightly offset from the
token’s edge along the normal to that edge, so as to better
capture users’ grasp (Figure 13-b). The exact value of this
offset (5mm) is calculated from the average offset measured
in trials performed with circular tokens in the previous exper-
iment, comparing the radius of the circle that passes through
the three touch points with the radius of the actual physical
token. (The precise, vector-based description of these tokens,
ready for laser-cutting or 3D printing, will be distributed pub-
licly and is also part of the earlier-mentioned supplemental
material available to reviewers.)



EXPERIMENT
We ran a controlled experiment to test users’ ability to ma-
nipulate tokens with notches, and to evaluate our algorithm’s
accuracy when provided with the above-mentioned universal
templates in combination with this particular kind of tokens.
The experimental design is similar to that of the previous
study, but uses the set of 6 tokens of Figure 13. We also in-
clude an additional DEVICE condition: participants perform
the tasks on both the tabletop and a tablet. Because of the
smaller size of the tablet, we exclude the Local condition
when DEVICE=Tablet, as the different locations (Figure 6)
are clearly too close to one another to impact users’ grasp.
Contrary to our formative experiment, participants did not re-
ceive any other instructions than to grasp the tokens using the
notches. In particular, the operator never asked them to adopt
a consistent grasp across trials for a given token.

Experimental design
Procedure
Half of the participants started with the Tabletop, while the
other half started with the Tablet. The strategy for counterbal-
ancing the presentation order of trials is exactly the same as
in the first experiment. The only difference lies in the Tablet
condition, in which participants only performed Global and
Path tasks (in this order), but not the Local task.

In the Tabletop condition, we collected 12 participants ⇥ 6
TOKEN ⇥ (5 [Global] + 2 ⇥ 5 LOCATION [Local] + 2 ⇥ 6
GESTURE [Path]) = 1944 trials. In the Tabletop condition,
we collected 12 participants * 6 TOKEN ⇥ (5 [Global] + 2 ⇥
6 GESTURE [Path]) = 1224 trials.

Participants & Apparatus
12 volunteers (3 female), aged 23 to 39 years-old (average
26.4, median 24.5), one left-handed, participated in this ex-
periment. Five of them had participated in the previous study.
The experimental setup for the Tabletop condition was ex-
actly the same as in the previous experiment. In the Tablet
condition, participants were seated at the same table, but had
to hold the tablet during the whole experiment, as illustrated
in Figure 14. The tablet (Samsung GT-P5110 Galaxy Tab 2)
had a 256.7 x 175.3 mm display area with a resolution of 1280
x 800 pixels.

Results
As illustrated in Figure 15, the recognition rate in both DE-
VICE conditions is very high: 98.7% on the Tabletop and
99.3% on the Tablet. A �2 analysis reveals that the effect of
INTERACTION on RECOGNITION RATE is significant neither
in the Tabletop condition (p = 0.8) nor in the Tablet condition
(p = 0.3). However, TOKEN has a significant effect in both
DEVICE conditions (Tabletop: �2(5,N = 1944) = 30, p < 0.001, � =
0.12 and Tablet: �2(5,N = 1224) = 30, p < 0.001, � = 0.16)). Actu-
ally, in the Tabletop condition, the RECOGNITION RATE is a
bit lower for Circle4 (95.6%) than it is for all other tokens (>
98.7%). The same is true for token Square4 (96.5%) in com-
parison with all other tokens (> 99%) in the Tablet condition.

Interestingly, even if we realized a posteriori that the thumb
marker (dot) is meant for right-handed users, our left-handed
participant did not have any trouble manipulating the tokens.
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Figure 15. Recognition rate per TOKEN in the Tabletop (left) and Tablet
(right) conditions. Error bars represent the 95% confidence interval.

He simply put his thumb in the notch opposite to the dot, ig-
noring the latter. Of course, he was able to do so because our
tokens feature an axis of symmetry. However, we expect that
TOUCHTOKENS’s approach can be used for arbitrary-shape
tokens, including some that would not feature a symmetric
touch pattern. In that case, users can still flip them to accom-
modate their handedness, provided that the tokens are flat.
If a token cannot be flipped easily, a solution would consist
in designing two variants: same shape but pattern of notches
mirrored. When the pattern cannot be mirrored because of the
shape’s geometry, it is still possible to design two patterns,
one for each handedness.

APPLICATIONS
The above results show that, using tokens with notches, it
is possible to build robust applications that will take advan-
tage of both gesture-based and tangible interaction. Applica-
tion domains that would benefit from such type of input are
quite varied and have already been discussed in the literature,
including: geographical information systems [32], database
querying [29, 45], information management [41, 44] and mu-
sic composition [30]. We developed a set of proof-of-concept
applications4 to illustrate the different roles that TOUCHTO-
KENS can play in an interactive system (see Figure 16).

TOUCHTOKENS can act as controllers or filters, and can be
used to manipulate both the content of an application or the
presentation of this content. For instance, they can be used
to adjust the parameters of a visualization, enabling users to
focus more on the result of their actions as the manipula-
tion of physical tokens decreases the demand on visual at-
tention [45]. We have developed a simple scatterplot visual-
ization in D3 [13] to illustrate this idea. The different cat-
egories in the data (e.g., countries grouped by continent) are
associated with different symbols (which have distinct shapes
and colors), as is typically the case when visualizing multi-
variate datasets. One TOUCHTOKEN, with matching shape
and color, is associated with each category and can be used
to adjust the visual representation of the corresponding data
points in the scatterplot: changing their size by rotating the
token, and their opacity by sliding it. TOUCHTOKENS can
be transparent, in which case they will typically be used as
physical see-through tools [10, 15], altering the content that
falls below the token (e.g., filtering) or changing its visual
attributes (e.g., rendering). For instance, we have developed
a simple mapping application in which tokens are associated
with different layers. The tokens act as magic lenses [10] that
4All demonstrated in the companion video.



Figure 16. Proof-of-concept applications: access control, tangible magic lenses, character controllers in a game, data visualization.

reveal the corresponding layer while leaving the context un-
touched. See-through tools can also be used to move content
in the workspace, as demonstrated in our simple game, where
transparent tokens control the location and orientation of in-
dividual characters.

TOUCHTOKENS can also act as a receptacle for, or tangible
representative of, digital content. Tokens then give access
to the associated content [26]. One of our demo application
illustrates how TOUCHTOKENS can be used for access con-
trol. Tokens can be used, e.g., to launch applications whose
icons are otherwise invisible or disabled on the tablet’s home-
screen, enabling the device to be shared with family (parental
control) and friends with some restrictions. Access to private
content can be made even more secure by requiring that the
token be put in a specific location, or that a particular gesture
be performed with it. Our last application demonstrates the
use of TOUCHTOKENS as digital containers. Users can reify
photo albums into tokens, and add a picture to an album by
holding the corresponding token above it. They can then dis-
play an album’s content as a grid of thumbnails by rotating
the token on the surface, or launch a slideshow by sliding it.

DISCUSSION AND FUTURE WORK

Main findings
We ran a formative experiment to investigate the possibility of
recognizing individual tokens by categorizing their associated
touch patterns. We were hypothesizing that differences in to-
ken shape and size might be sufficient to accurately discrimi-
nate those patterns. Our results revealed significant inter-user
variability in terms of accuracy: our algorithm can recognize
up to ten touch patterns with more than 90% accuracy for
some users, while for other users, its accuracy falls down as
soon as three or more tokens are in the set. This variabil-
ity comes from two sources: 1) some users employ different
grasp strategies for the same token; 2) some users employ
grasp strategies for different tokens that yield very similar
touch patterns.

Based on these observations, we then designed a set of six
tokens featuring notches aimed at reducing this variability
while remaining comfortable to grasp. A summative exper-
iment showed that with this set of tokens, our recognizer has
a minimum accuracy over all participants higher than 95%
(avg. 98%), and this without any training. Augmented with
notches, TOUCHTOKENS offer a low-cost, yet reliable, solu-
tion for enabling tangible interaction on multi-touch surfaces.

As mentioned earlier, we make this recognizer freely avail-
able, along with vector-based templates for the tokens.

Alternative recognition strategies
Our algorithm is fast, robust, and easy to implement. It also
features the best recognition rate among all alternatives that
we implemented and tested on the data collected during our
formative study. Alternative approaches we considered led
to significantly poorer performance. In particular, we tested
k-Nearest-Neighbour (k=1 and k=3) and SVM algorithms,
using both raw data and describing features. The raw data
was pre-processed to make it independent from rotation an-
gle and finger identification. The describing features we con-
sidered included the touch envelope’s area, as well as various
descriptive statistics (min, max, mean, median and standard
deviation) for measures such as point-centroid distance, dis-
tance between successive points, distance between any pair
of points, etc. These machine learning approaches yielded
recognition rates ranging from 50% to 85% per participant.
Compared to this, the analytical approach detailed in this pa-
per, which consists in aligning touch patterns using their cen-
troid as a reference point, works much better. We also consid-
ered using as a reference point the center of the best-fit circle
(i.e. the circle that passes through three touch points while
minimizing the distance to all remaining points) rather than
the centroid, but results were slightly worse. The recognition
rate was lowered by about 3% on average.

Future work
After this first investigation, we plan to study more system-
atically the limits of our approach, to see how it can scale to
larger sets of tokens and/or to tokens that have varying ge-
ometries. We want to better characterize the minimal differ-
ence between two touch patterns, in order to be able to auto-
matically position notches that meet our requirements: create
tokens that are comfortable to grasp and that our algorithm
can recognize with a high level of accuracy.

We also plan to conduct a fine-grained analysis of the fingers’
traces on the surface at the precise moment they are lifted off.
We want to investigate if these traces provide enough data to
find out whether the token is still on the surface or not. In-
deed, when lifting her fingers off the surface, the user might
leave the token on it, or she might remove it. This would al-
low us to support additional interactions, such as when plac-
ing multiple tokens on the tactile surface to express, e.g.,
layout and alignment constraints [20] or advanced database
queries with networks of tokens [29].
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