
HAL Id: hal-01777599
https://hal.archives-ouvertes.fr/hal-01777599

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Custom-made Tangible Interfaces with TouchTokens
Caroline Appert, Emmanuel Pietriga, Eléonore Bartenlian, Rafael Morales

González

To cite this version:
Caroline Appert, Emmanuel Pietriga, Eléonore Bartenlian, Rafael Morales González. Custom-made
Tangible Interfaces with TouchTokens. Proceedings of the International Working Conference on Ad-
vanced Visual Interfaces, May 2018, Grosseto, Italy. �10.1145/3206505.3206509�. �hal-01777599�

https://hal.archives-ouvertes.fr/hal-01777599
https://hal.archives-ouvertes.fr

Custom-made Tangible Interfaces with TouchTokens
Caroline Appert, Emmanuel Pietriga, Éléonore Bartenlian, Rafael Morales González

Univ. Paris-Sud, CNRS, INRIA, Université Paris-Saclay

Orsay, France

appert@lri.fr,emmanuel.pietriga@inria.fr,eleonore.bartenlian@u-psud.fr,morales@lri.fr

ABSTRACT
TouchTokens were introduced recently as a means to design low-

cost tangible interfaces. The technique consists in recognizingmulti-

touch patterns associated with specific tokens, and works on any

touch-sensitive surface, with passive tokens that can be made out

of any material. TouchTokens have so far been limited to a few

basic geometrical shapes only, which puts a significant practical

limit to how tailored token sets can be. In this article, we introduce

TouchTokenBuilder and TouchTokenTracker that, taken together, aim
at facilitating the development of tailor-made tangible interfaces.

TouchTokenBuilder is an application that assists interface designers

in creating token sets using a simple direct-manipulation interface.

TouchTokenTracker is a library that enables tracking the tokens’ full
geometry. We report on experiments with those tools, showing the

strengths and limitations of tangible interfaces with passive tokens.

CCS CONCEPTS
• Human-centered computing → Interface design prototyp-
ing; Gestural input;

KEYWORDS
Multi-touch surfaces, Tangible Interaction, Customization

ACM Reference Format:
Caroline Appert, Emmanuel Pietriga, Éléonore Bartenlian, Rafael Morales

González. 2018. Custom-made Tangible Interfaces with TouchTokens. In

AVI ’18: 2018 International Conference on Advanced Visual Interfaces, AVI ’18,
May 29-June 1, 2018, Castiglione della Pescaia, Italy. ACM, New York, NY,

USA, Article 4, 9 pages. https://doi.org/10.1145/3206505.3206509

1 INTRODUCTION
Tangible interfaces have been designed for use in various domains

such as music composition [14], storytelling [23], games [3, 26],

teaching [21], programming [5, 11] and database querying [13, 25].

All of these interfaces feature physical tokens that aim at resembling

actual objects from the targeted application area. Variations in the

shape, size and material of these tokens all play an important role

in providing the right manipulation affordances and conveying

the proper semantics [22, 25]. Promoting tangible interfaces thus

Caroline Appert & Emmanuel Pietriga & Éléonore Bartenlian & Rafael Morales
González. Custom-made Tangible Interfaces with TouchTokens. In AVI ’18:
Proceedings of the International Working Conference
on Advanced Visual Interfaces, 8 pages, ACM, may 2018.

©ACM, 2018. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version will be
published in AVI ’18, May 29–June 1 2018, Grosseto, Italy.
https://doi.org/10.1145/3206505.3206509

requires enabling designers to easily build tailor-made tokens that

suit their specific needs.

The physicality of tangible interfaces makes them resistant to

customization, however [12]. Various approaches to building tangi-

ble interfaces exist, such as vision-based frame analysis for diffused

illumination tabletops (e.g., [13, 14]), conductive tokens tracked on

a capacitive surface (e.g., [16, 27]) or specific sensors (magnetome-

ters, Hall-effect sensors) augmenting the display surface in order to

detect magnetic tokens [12, 18]. But whichever the technology con-

sidered, building and tracking tangible tokens remains an effortful

process in terms of fabrication, software development, or both.

TouchTokens [19] offer an alternative solution, enabling the

design of low-cost tangible interfaces. The general principle con-

sists of designing tokens of varying shapes, all featuring notches

that constrain how users grasp them. When users touch the surface

while holding a given token, the specific multi-touch spatial pattern

associated with it is recognized using a pattern-matching algorithm

that does not require any training or calibration. TouchTokens are

fully passive. They can be fabricated using any non-conductive ma-

terial, offering designers much flexibility in that respect. However,

the proposed approach is currently limited to a set of simple shapes

(square, rectangle, circle and triangle). In this article, we introduce

two tools that allow interface designers to build and recognize

TouchTokens featuring arbitrary shapes.

Our first contribution, TouchTokenBuilder , is a software applica-
tion that assists interface designers in placing notches on arbitrarily-

shaped vector contours for creating conflict-free token sets. The

application features a simple direct-manipulation interface and out-

puts two files: a vector-graphics description of all tokens in the set,

ready to be fabricated using, e.g., a laser cutter; and a numerical

description of the geometry of each token.

Our second contribution, TouchTokenTracker , is a software li-

brary that takes as input the numerical description produced by

TouchTokenBuilder . While TouchTokens’ original algorithm [19]

only provided developers with the ID of the recognized token and

the user’s finger coordinates, the new TouchTokenTracker also en-

ables tracking the tokens’ full geometry (location, orientation and

shape) throughout their manipulation on the multi-touch surface.

In addition, tracking remains robust even when users lift a finger

while manipulating tokens (leaving a minimum of two fingers in

contact with the surface), as illustrated in Figure 1.

After reviewing related work, we describe TouchTokenBuilder
and TouchTokenTracker . We then present some proof-of-concept

token sets designed with TouchTokenBuilder , and report on ex-

periments conducted to evaluate TouchTokenTracker’s recognition
accuracy for these token sets. Finally, we discuss the limitations of

our approach and directions for future work.

https://doi.org/10.1145/3206505.3206509
https://doi.org/10.1145/3206505.3206509

AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy

Octopus,3,-10.45,-14.28,9.81,[...]

[...]

Rabbit,3,4.76,-4.45,4.72,27.10,[...]

toy_characters.txt

toy_characters.svg

FABRICATION

TouchTokenTracker

TouchTokenBuilder

SVG IMAGES

Figure 1: TouchTokenBuilder (left) assists users in placing grasping notches on arbitrarily-shaped tokens, warning them about
spatial configurations that could generate recognition conflicts or that might be uncomfortable to manipulate. TouchToken-
Builder outputs both a vector and a numerical description of the tokens’ geometry (middle). Those are used respectively to
build the tokens (top-right), and to track them on any touchscreen using TouchTokenTracker (bottom-right).

2 RELATEDWORK
Researchers have investigated different approaches to building tan-

gible interfaces. We give an overview of these approaches and

discuss their advantages and limitations, as well as their flexibility

in terms of building custom-made interfaces.

Vision-based token tracking. Tangible interfaces that use a dif-
fused illumination table (e.g., [13, 14, 23]) or any other system that

tracks the surface with one or several cameras (e.g., [3, 5, 11]) rely on
vision-based algorithms to recognize objects in video frames. While

such vision-based approaches can be used to track any kind of tangi-

ble object, they require calibration as well as specific environmental

conditions to avoid issues related to lighting and occlusion.

Active tokens. Active tokens (e.g., [15, 24, 25, 30]) are small, au-

tonomous units equipped with a processor and a screen that func-

tion independently from any specific interactive surface. Active

tokens are programmable units, which can be customized for any

type of application. Customizing their form factor can be achieved

by constructing specific casings [15, 30], but the design space re-

mains limited, as casings have to accommodate the incompressible

active unit.

Magnetic tokens. Communication between the surface and the

tokens can be achieved using magnetic fields (e.g., [12, 17, 18]).
Building a custom token means embedding a magnet and imple-

menting an algorithm for recognizing its specific magnetic field.

Gauss bricks [17] can be assembled together to create larger ob-

jects that can feature both deformable and rigid parts. While this

approach enables very rich interactions, it still requires augment-

ing the surface with Hall-sensors and ensuring that the device’s

environment is free of any ferrous object that could interfere with

the tangibles’ magnetic field.

Capacitive tokens. Multi-touch capacitive screens can also be

used to transform tokens into interactive elements. The approach

consists of building tokens that create a conductive circuit between

users’ fingers and the capacitive surface through the tokens’ feet,
that are in contact with the surface (e.g., [7, 16, 28]). As soon as the

user touches the token, the feet become grounded and generate a

drop in capacitance similar to a multi-touch pattern. Designing such

tokens requires identifying unique token feet configurations and

building a robust conductive circuit, which may be quite difficult [4].

TouchTokens. TouchTokens provide designers with a low-cost,

flexible approach to the construction of tangibles using everyday

materials. The original approach [19] was limited, however, because

of the fact that the only input data available to the system consisted

of the coordinates of the users’ three finger contact points. Only

one set of six basic tokens were available, and interface developers

only had access to the recognized token’s ID and associated finger

contact points. In this paper, we extend TouchTokens so as to enable

the design of tangible interfaces that feature arbitrarily-shaped

tokens while preserving the simplicity of the original approach. We

achieve this extension without resorting to any additional input

technology: only the finger contact point coordinates are required

to recognize and track tokens.

3 TOUCHTOKEN BUILDER
TouchTokens feature three notches that suggest to users how those

tokens should be grasped so as to enable effective recognition of

those tokens by the system. The recognition algorithm only needs

one unique template per token, called universal template. This tem-

plate consists of a series of three coordinates, that correspond to

the expected finger contact point coordinates relative to the token’s

center. These simple templates have been demonstrated in [19] to

be sufficient to achieve a recognition accuracy of ∼98% with a set

of six tokens featuring basic geometrical shapes (4-to-5cm large).

TouchTokens’ approach is simple. But it requires designers to

compute the coordinates of the templates’ points (feeding the rec-

ognizer), and to specify the geometry of each token’s contour with

some vector-drawing tool (for fabricating the tokens), carving them

accordingly to create the notches. This can be a tedious process.

Custom-made Tangible Interfaces with TouchTokens AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy

This section introduces TouchTokenBuilder1, an application that

makes the token design process easier. Building a token now sim-

ply consists of importing an SVG image, and positioning the three

notches on that contour by dragging three circles that represent

the user’s finger tips.

3.1 Designing arbitrarily-shaped tokens
Figure 1 illustrates the general approach that a designer can follow

when creating a set of tokens, in this case for a game where toy

characters (octopus, monster, cat, frog and rabbit) are controlled

with tangible tokens. He first identifies a set of SVG images he

wants to use for the different tokens. In our scenario, those simply

get downloaded from the Web.
2
He then loads them in TouchTo-

kenBuilder . For each SVG image, TouchTokenBuilder computes the

outline of the entire geometry and creates a new cell in which it

displays SVG elements (ignoring style attributes to avoid visual

interference with TouchTokenBuilder’s graphical elements), as illus-

trated in Figure 1. SVG elements are turned into Java2D shapes with

the help of the Batik toolkit.
3
The outline of the entire geometry

is computed by making the union of all those shapes, taking into

account groupings and affine transforms, and then marching along

the contour of the resulting shape.

Each token outline can be manipulated using simple widgets to

adjust its scale and orientation. As shown in Figure 2-(a), a ring

surrounds the token, featuring two square handles to resize the

token, and a circular handle to rotate it. Two arrows, positioned

above, let users flip the token vertically or horizontally. A panel on

the left-hand side of each token cell enables users to position the

three finger notches on the outline. Fingers are represented using

semi-transparent blue circles (thumb: light blue, middle: medium

blue, index: dark blue). Each of these circles can be dragged and

resized, and acts as a carving tool: when a circle intersects the

token’s outline, it actually subtracts the intersecting area from the

token, computes the corresponding universal-template point (i.e.,
the estimated finger contact point), and detects potential sources

of conflicts between tokens, as detailed later.

TouchTokenBuilder adapts each token’s display size depending

on screen resolution, so that it matches its actual physical size

when fabricated. Such resolution independence helps designers

informally evaluate how comfortable a given token is to grasp, by

putting their fingers on the corresponding circles on screen. The

SVG vector description output by TouchTokenBuilder declares the
document size and view box parameters so that the coordinates are

correctly interpreted by the fabrication device that will be used to

make the tokens such as, e.g., a laser cutter.
Once satisfied with his set, the designer can export the cor-

responding vector and numerical descriptions (Figure 1-middle).

TouchTokenBuilder turns what was a tedious process (relying on

vector graphics editing and geometrical computations) into a se-

quence of simple, direct manipulations. It does not require users to

manually draw or extract the token’s contour. Most importantly,

it enables users to very easily test alternative placements for the

1TouchTokenBuilder Java application and TouchTokenTracker TUIO and Android im-

plementations are available at https://www.lri.fr/~appert/touchtokens.

2
In this particular example: http://www.clipartlord.com/category/halloween-clip-art/

monsters-clip-art/

3
http://xmlgraphics.apache.org/batik/ (visited 2018-01-12)

finger notches, as the computation of the carved contour is now

fully automatic. Token design is achieved through a very simple

interaction model, based exclusively on drag-and-drop, that avoids

premature commitment [9], making the design process much more

flexible. To further facilitate exploratory design by trial-and-error,

TouchTokenBuilder also supports a per-object history of actions [1],

enabling users to revert any graphical object such as, e.g., a finger
circle or a token manipulation handle, to one of its earlier positions.

3.2 Anatomical considerations
TouchToken assumes by design that users will be holding tokens

using a three-finger grasp (i.e., “tripod” grasp), which has been

shown to be the typical grasp for simple objects whose diameter

is ∼4-7cm [8]. Based on this tripod-grasp assumption, TouchToken-
Builder provides users with some indications about the stability

and comfort of each token grasp.

Stability. Research in experimental psychology has produced a

model according to which, in a tripod grasp, the thumb acts in op-

position to the other fingers to form a pinch [2]. TouchTokenBuilder
estimates the forces applied by the different fingers as follows: i) the

thumb applies a force towards the tripod’s centroid, and ii) both

the index and the middle apply a force towards the thumb. A grasp

is likely to be ineffective at firmly maintaining the token during

manipulation if one of the forces has a direction that is too similar

to the tangent to the token contour at that point. As soon as the

three fingers are placed along the token contour, TouchTokenBuilder
displays arrows to represent the forces. Arrows’ color depends on

the angle they form with the token contour: from green (orthogo-

nal) to red (parallel) (using a linear interpolation of H, and keeping

S and V constant in the HSV color space). For example, Figure 2-(b)

shows a token that is likely to be unstable during manipulation, as

the index (dark blue) and middle finger (medium blue) might slip

along the token contour.

Comfort. In TouchTokenBuilder’s interface, designers are free
to move fingers anywhere along the token contour. Nothing pre-

vents them from defining tripods that are very uncomfortable, or

even impossible, to achieve. Fingers are not independent entities;

each finger’s range of motion heavily depends on the other fingers’

position [10, 29]. In order to identify comfortable tripod configura-

tions, we ran an experiment to estimate the range of comfortable

positions for the index finger once the thumb and the middle finger

are positioned on the surface. Figure 3 illustrates our experimental

task. Participants hold a physical ruler between their thumb and

middle fingers, and then slide their index on the surface to color

the area that they deem comfortable. We chose this setup, where

the index is mobile and the middle finger is static, because the

degree of dependence of the middle finger is higher than that of

the index [10]; meaning that moving the middle finger once the

location of the index is set is more difficult than the opposite.

Six right-handed volunteers (3 female), aged 26 year-old on av-

erage (median: 26.5), participated in our experiment. The tablet

was a Samsung GT-P7510 with a 217 × 137 mm display area and a

resolution of 1280 × 800 pixels. Each participant performed 5 trials

with 8 different rulers of varying lengths (Lenдthruler ∈ {3cm, 4cm,

..., 9cm, 10cm}) for a total of 40 trials, which were presented in

a random order. We considered different ruler lengths as we had

https://www.lri.fr/~appert/touchtokens
http://www.clipartlord.com/category/halloween-clip-art/monsters-clip-art/
http://www.clipartlord.com/category/halloween-clip-art/monsters-clip-art/
http://xmlgraphics.apache.org/batik/

AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy

Comfortable area
for the index finger

Thumb

Middle
finger

Index
finger

(a) (b)

Figure 2: TouchTokenBuilder provides immediate visual feedback about both finger tripod comfort and potential recognition
conflicts between tokens. TouchTokenBuilder’s interface distinguishes the token currentlymanipulated by the user (the active
token) from the other tokens. (a) An active token, with arrows representing forces (two of which are colored red to indicate
that the grasp might be difficult to maintain) and a blue hollow circle representing the comfortable area for the index finger
(the grasp should be comfortable as long as the black cross corresponding to that finger remains inside this circle). (b) Token
conflict: the active token (left) is currently in conflict with the token whose frame is colored red (middle one). Notch circle
contours for the active token are also painted red to further emphasize this conflict, and suggest that the conflict can be
resolved by moving one or more of those notches.

Figure 3: A trial to collect comfortable tripod grasps. (Left)
Two circles indicate where to put the physical ruler (red cir-
cle: middle, blue circle: thumb). (Right) Participants slide
their index to turn yellow the area within which this latter
finger can be without making the hand posture become un-
comfortable.

hypothesized that the distance between the thumb and the middle

finger might have an impact on the range of motion of the index

finger. As illustrated in Figure 3, at the beginning of each trial, two

colored circles indicate where to put the ruler. Participants then

color the comfortable area with their index. In case either the thumb

or the middle finger leave their tolerance area, the participant is

asked to restart the trial.

We wanted TouchTokenBuilder to be able to provide recommen-

dations about where to put the notch for the index finger once

the two other notches were positioned on the token. We thus use

descriptive features of the comfortable area for the index finger

(Iarea , the polygon envelope for the polyline defined by sliding

movements) that are relative to TM , i.e., the segment defined by

the thumb’s location (T) and the middle finger’s location (M). The

list of features is as follows:

• |T I |: the distance between the thumb and the center I of
Iarea ’s bounding box,

• Iradius : the radius of the largest circle inscribed in Iarea ’s
bounding box,

• ∠MTI : the angle formed by pointsM , T and I at point T .

Collected data reveal a lot of variability across participants, with

the following average values:

• |T I |: min average value = 3.9 ± 1cm, max = 6.3 ± 1.8cm;

• Iradius : min average value = 1.3±0.2cm, max = 1.7±0.5cm;

• ∠MTI : min average value = 51
◦ ± 10

◦
, max = 60

◦ ± 7
◦
.

We wanted to test if this variability came from differences in finger

size across participants, as this would have enabled us to define

the comfortable area as a function of finger size. To that end, we

considered variable Finдersize , which is the average size over the

three fingers involved in tripods,
4
and tested its effect on our mea-

sures. An anova test revealed that Finдersize has a significant effect
on |T I | (F5,234 = 20.3, p = 0.001). However, further investigations

showed that differences in |T I | do not only come from differences

in finger size, as we also observed a significant effect of Finдersize
on ratio |TM |/|T I | (F5,234 = 63.7, p = 0.001).

This variability shows that the estimation of comfortable tripods

should be made carefully. Ideally, an application that aims at pro-

viding recommendations should base them on individual hand mea-

surements gathered through, e.g., a short calibration phase with a

setup similar to that of the experiment described above. However,

not only would this add some overhead, but it would also require

that tokens be designed by end-users. We adopted a less precise

but more versatile approach. We aggregate data from our different

participants to define an average user, and we use these data to

display a circular area that gives a coarse indication of where the

index should be put once the thumb and the middle finger are posi-

tioned (Figure 2). We insist on the fact that it gives only a coarse

4
For each participant, we measured the distance between the bottom of the proximal

phalanx and the top of the distal phalanx for the three fingers (thumb, middle, index).

Custom-made Tangible Interfaces with TouchTokens AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy

indication, and encourage users to place their fingers on the screen

and use their personal judgment to evaluate a tripod’s comfort.

3.3 Recognition conflicts
As described above, TouchTokenBuilder makes it easy for designers

to test different positions for the three notches that must be carved

in each token. However, finding correct positions for notches is

not solely a question of comfort and aesthetics (avoid altering the

original shape too much). It also involves preventing recognition

conflicts between tokens in the set. To this end, TouchTokenBuilder
provides immediate visual feedback about conflicts. The contours

of finger placeholders for the active token (the one currently being

manipulated) change color (smoothly, in a range from green to

red) when conflicts with other tokens are detected. So does the

frame of the most-conflicted token. Figure 2-(b) illustrates a rather

strong conflict (red contour color). Resolving such conflicts can

be achieved by moving one or more notches along the contour, or

adjusting the token’s size, thereby causing the notches to move

closer or farther away from the token’s centroid. Visual warnings

(red contours) disappear as soon as the conflict has been resolved.

Conflict detection is based on a heuristic derived from data col-

lected in the second experiment reported in [19]. For all three

notches of each trial, we computed the distance between the actual

touch point and the template point Ptemplate , located 5mm away

along the normal at the notch’s center. Figure 4 summarizes the

results: in ∼98% of all cases, this distance is less than 5mm for all

three notches. Based on these observations, we define the tolerance

area of a notch as a 5-mm radius circle around its corresponding

template point. Two tokens are thus likely to cause confusion if

they can accommodate the same multi-touch input within their

respective tolerance areas.

TouchTokenBuilder relies on this notion of tolerance area to check
for conflicts each time the contour of a token T in the pair is modi-

fied (the user has changed the token orientation or size, or a notch

location or size). The algorithm for conflict checking works as fol-

lows. First, for each pair of tokens (T , T ′
), it aligns the template

of T ′
with that of T , and computes the distance between the two

other pairs of points (dist1 and dist2, in cm). If at least one of those

distances is greater than 1cm, there is no conflict, and TouchTo-
kenBuilder does not perform any further check. Otherwise, the

probability for T ′
to conflict with T is computed as 1 - max(dist1,

dist2). TouchTokenBuilder looks for the token that has the high-

est conflicting score s with T , and highlights both the frame of

this token and the contour of finger placeholders in T using the

green-to-red color range mentioned earlier.

4 TOUCHTOKEN TRACKER
TouchTokenTracker allows developers who make use of arbitrarily-

shaped tokens in their application to track the full geometry of

those tokens. Distributed as a library, it enables the development of

applications that need to display contextual information around or

below the token. Examples include information filtering using tangi-

bles as see-through tools [6], and games (Figure 6-(c) demonstrates

launching missiles from a tangible spaceship). TouchTokenTracker’s
recognition algorithm relies on the three points provided in each

token template, as the original TouchToken recognizer [19] did. It

0.0

0.1

0.2

0.3

0.4

0.5

0.0 2.5 5.0 7.5 10.0

de
ns

ity

0.0

0.1

0.2

0.3

0.4

0.5

0.0 2.5 5.0 7.5 10.0

de
ns

ity

0.0

0.1

0.2

0.3

0.4

0.5

0.0 2.5 5.0 7.5 10.0

de
ns

ity

1st notch 2nd notch 3rd notch

Figure 4: Distance (mm) between Ptemplate and Pactual (tem-
plate and actual touch points) for all 3 notches. Red dashed
lines show median values.

considers two additional pieces of information, provided in the new

templates output by TouchTokenBuilder : the token’s center coor-
dinates, and a description of its contour as a polyline. These are

used to estimate the location and orientation of the token, which

are then exposed through a simple API.

To recognize tokens, TouchTokenTracker identifies the best align-
ment between the points of each candidate token’s template and the

actual touch points. Aligning template points with touch points re-

quires translating and rotating template points so as to (1) make the

centroids of the touch and template points coincide, and (2) align

this centroid with the first pair of matched touch and template

points. TouchTokenTracker stores the pairing between a touch point

and its corresponding template point. It also stores the initial loca-

tions of the touch points and the token’s initial orientation, which

is the rotation angle used to align the first pair of points with the

centroid. Using this information, it can estimate the current orienta-

tion and location when users move and rotate the token. In case the

user lifts a finger off the surface to adopt a 2-finger pinch grasp that

facilitates some manipulations, as in Figure 6, TouchTokenTracker
computes a third artificial touch point, assuming that the relative

placement between touch points and between the template points

are consistent. Keeping track of the three notches’ locations can be

useful to implement some interactions like the missiles launched

by the spaceship in Figure 6-(c).

Events and information regarding a token geometry are made

available to developers through three simple callbacks: tokenDown,

tokenMoved and tokenUp, and methods: getTouchPoints, getNotch-

Points, getContourShape, getInitialOrientation, getRelativeOrien-

tation and getTokenCenter.

5 EXPERIMENT 1: DESIGNING TOKENS
We conducted an experiment to observe whether users are able to

design conflict-free and comfortable token sets without significant

training. The experiment consisted of two sessions, held on two con-

secutive days. On day 1, participants had to design a token set with

TouchTokenBuilder on a large horizontal screen, starting from one

of the three picture sets shown in Figure 5. We then fabricated that

token set using a laser cutter. On day 2, participants had to perform

a series of docking tasks with their tokens on a tablet device. The

goal was to evaluate recognition accuracy for this particular token

AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy

SVG images Token set Scores Token set Scores

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

1

2

3

4

5

C S R

1

2

3

4

5

C S R

[P2] average scores: C = 0.75, S = 0.85, R = 0.95 [P3] average scores: C = 0.7, S = 0.8, R = 1

1

2

3

4

5

C S R

1

2

3

4

5

C S R

[P1] average scores: C = 0.85, S = 0.8, R = 0.95 [P4] average scores: C = 0.7, S = 0.85, R = 0.76

1

2

3

4

5

C S R

1

2

3

4

5

C S R

[P0] average scores: C = 0.9, S = 0.9, R = 0.96 [P5] average scores: C = 0.45, S = 0.55, R = 0.66

C: normalized agreement score
(∗)

to the statement “The token is comfortable”.
S: normalized agreement score

(∗)
to the statement “The token is stable during manipulation”.

R: token’s recognition accuracy over the 5 test trials.

(∗)
0: strongly disagree, 0.25: disagree, 0.5: neutral, 0.75: agree, 1: strongly agree

Figure 5: The six token sets that participants designed during the experiment, along with their scores.

set, and to gather feedback about how comfortable individual to-

kens are to grasp. The docking task (Figure 7-(a)) and experimental

procedure is identical to that of Experiment 2, reported in the next

section. For this first experiment, which focuses on token design,

participants also had to give a comfort score C, and a stability score

S, by rating the two statements reported in Figure 5 on 5-point

Likert scales. The last score, R, is the recognition accuracy that we

measured on day 2, which involved five docking tasks per token.

Participants. Six volunteers (three male), all right-handed, aged

25 to 41 year-old (median 29.5), participated in our study. Four of

them had already interacted with TouchTokens in the context of the

study reported in [19]. The other two (P4 and P5) had only watched
the companion video of [19].

Apparatus. On day 1, TouchTokenBuilder was running on a

3M Multi-Touch Display C3266P6, featuring a 698.4 × 392.85 mm

display area and a resolution of 1920 × 1080 pixels. The display

was placed flat on a desk, in landscape orientation. On day 2, the

experiment software was running on a Samsung SM-T810 Galaxy

Tab S2, featuring a 237.3 × 169 mm display area and a resolution of

2048 × 1536 pixels. It was also placed flat on a desk.

Task. At the beginning of the design session on day 1, the op-

erator gives a 5-minute demonstration of TouchTokenBuilder on a

token set that will not be used in the remainder of the experiment.

The operator explains the meaning of the different visual indica-

tors, and insists on the fact that those are just estimations, inviting

participants to place their fingers on-screen to cross-check these

estimations with their personal appreciation. Then, participants

are given 20 minutes to place notches on the five tokens in the set.

They can stop at any moment before this time has elapsed, if they

are satisfied. We chose to test sets of five tokens, as our personal

experience revealed that having to deal with a larger number of

arbitrarily-shaped tokens makes the task especially challenging.

Custom-made Tangible Interfaces with TouchTokens AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy

Results. Participants took from 11 to 20 minutes (median: 17)

to complete the task. Figure 5 provides an exhaustive report of

our results, per participant. The average scores were rather good,

with i) a recognition accuracy (R) of 88% (min: 66%, max: 100%);

ii) a comfort score (C) of 0.73 (min:0.45, max:0.9), indicating good

agreement with statement “The token is comfortable” ; and iii) a sta-

bility score (S) of 0.8 (min:0.45, max:0.9), indicating good agreement

with statement “The token is stable during manipulation”. However,
there is a lot of variability across participants. In particular, P4 and
P5, who had never manipulated TouchTokens before, had more

difficulty designing comfortable and conflict-free token sets. As

opposed to other participants, they both mentioned that they had

some trouble imagining what the physical tokens would eventually

look and feel like. One of them said that having an up-to-date view

of the resulting tokens, as stored in the SVG export (as opposed

to only seeing their silhouettes in TouchTokenBuilder’s interface)
would have helped. Regarding anatomy, P5, who has especially

large hands, asked for the possibility to calibrate the application

in order to get comfort indications that better fit different types of

hands. Both P4 and P5 also mentioned that they would have liked to

involve the ring finger, either as a fourth finger in the grasp, or as

a replacement for the index finger. The other participants, who had

already manipulated TouchTokens, never brought up such issues.

However, our results support the fact that 5 is close to the maxi-

mum number of arbitrarily-shaped tokens that can be managed, as

almost all sets feature a token that is either less-accurately recog-

nized or less comfortable than the others. Participants also raised

an issue with the colors used for the different finger notches, that

were found to be too similar to each other. Finally, two participants

suggested that, when TouchTokenBuilder runs on a multi-touch

surface, it could allow users to simply put their fingers on screen

to provide a first grasp estimation, that could then be adjusted to

resolve conflicts and make them comfortable.

6 EXPERIMENT 2: TRACKING TOKENS
This section presents an evaluation of TouchTokenTracker’s accu-
racy on three token sets that we developed for the proof-of-concept

applications shown in Figure 6 and in the companion video.
5
The

first proof-of-concept example is about controlling a virtual toy

character using its tangible counterpart. The second example is a

simplified house automation control system. Users can switch the

light on/off, get information about energy consumption, turn on

video-surveillance, play music, and lock the house. The last example

is a bi-manual game. Users manipulate one of the warships with

their dominant hand, and select a weapon with their other hand.

We tested whether TouchTokenTracker could accurately identify

the tokens’ location and orientation. We ran one experiment per

token set {Toys, Home, Space}. Each experiment had two factors:

Token and Orientation. Toys and Home each featured five tokens,

while Space featured four tokens. Orientation could take five

different values: {−π/3, −π/6, 0, +π/6, +π/3}. Values outside {−π/3,
+π/3} were not considered, as they would have been beyond the

limits of users’ range of motion.

5
The companion video is available at https://www.lri.fr/~appert/touchtokens.

Participants. Nine volunteers (one female), aged 23 to 33 year-

old (average 26.5, median 26), participated in our study. Each of

them performed the three experiments (one per token set) in a row.

Apparatus. The experiment ran on a tablet (Samsung SM-T810

Galaxy Tab S2) featuring a 237.3 × 169 mm display area and a

resolution of 2048 × 1536 pixels. Participants were standing up,

holding the tablet during the whole experiment.

Task and procedure. At the start of each trial, a token silhou-

ette was displayed at the center of the screen, with a specific ori-

entation (Figure 7-(a)). Participants were asked to dock the cor-

responding physical token inside the silhouette, and wait for the

background to turn blue before lifting the token off the surface, and

proceed to the next trial. Participants had to hold the token still

for 1 second. TouchTokenTracker’s algorithm was then executed.

The system logged the ID of the recognized token, its estimated

location, and orientation.

We counterbalanced token-set presentation order using a Latin-

square, assigning three participants to each of the three orders.

For each token set, participants ran 5 trials per Token, testing

the 5 Orientation values. The experiment was approximately 10-

minute long. It started with 5 practice trials (randomized Token

× Orientation conditions), followed by 25 measure trials (20 for

Space) presented in random order.

Results. We considered the following three measures to cap-

ture TouchTokenTracker’s accuracy: RecognitionError, a binary value
indicating whether the token is accurately recognized or not; Orien-
tationError, a continuous measure of the absolute difference (in ra-

dians) between the silhouette’s orientation and the physical token’s

orientation, as estimated by TouchTokenTracker; and DistanceEr-
ror, a continuous measure of the distance (in millimeters) between

the silhouette’s center and the physical token’s center, again as

estimated by TouchTokenTracker .

(a)

(b)

(c)

Figure 6: The three proof-of-concept token sets: (a) toy char-
acters, (b) home automation, (c) spaceship game.

https://www.lri.fr/~appert/touchtokens

AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy

a) b)

0.0

0.5

1.0

1.5

Lig
ht

Bulb

M
us

ic

Ship
2

M
on

ste
r

Cam
er

a

W
ea

po
n1

Fro
g

Octo
pu

s
Key

Ship
1

Rab
bit Cat

Hou
se

W
ea

po
n2

Token

O
rie

nt
at

io
nE

rr
or

 (
in

 r
ad

ia
ns

)

c)

0

3

6

9

Lig
ht

Bulb

Octo
pu

s

M
on

ste
r

M
us

ic

Ship
1
Ship

2

Cam
er

a
Fro

g

W
ea

po
n1 Key

Hou
se Cat

Rab
bit

W
ea

po
n2

Token

D
is

ta
nc

eE
rr

or
 (

in
 m

m
s)

Figure 7: A trial in our experiment: (a) the participant has to dock the corresponding physical token inside the displayed
silhouette. (b) OrientationError and (c) DistanceError per Token. Error bars represent the 95% confidence interval.

We observed an overall recognition accuracy of 98%. The rec-

ognizer failed to identify the correct token in only 12 of the 630

trials: 6 times with the Cat, 3 times with the Camera, and once

with the Key, the Rabbit andWeapon1. A Friedman rank sum test

revealed that the difference between Token conditions regarding

recognition accuracy is actually significant (χ̃2(13) = 38, p < 0.001).

We attribute this difference to the fact that the Cat token requires

users to spread the index and middle fingers a bit too much. Par-

ticipants might have placed their index and middle fingers closer

together, so as to make their grasp more comfortable, thus not

exactly coinciding with the notches.

Figure 7 summarizes the tracker’s performance results regarding

the evaluation of token position and orientation, a piece of infor-

mation that the original recognizer [19] was unable to provide (as

it was just providing the token’s ID and the location of the fingers

that were in contact with the surface). For 10 of the 14 tokens, Ori-
entationError is less than 0.15 (

π
20
) and DistanceError is less than

3.1mm. However, TouchTokenTracker’s estimations are much less

accurate for the other 4 tokens: House, Cat, Rabbit andWeapon2.

This result is not really surprising. These four tokens feature at

least two template points that are symmetric relative to the axis

defined by the third point and the centroid, which implies that

there is more than one solution for the recognizer’s best-alignment

algorithm. While this does not affect the recognition of the token’s

ID, Figure 8 illustrates how two different orientations can match the

same template points. As the token’s center location is derived from

the token’s orientation, it is not surprising that DistanceError is also
larger for those four tokens than it is for the other ten, whose orien-

tation was properly estimated by TouchTokenTracker . We computed

a linear regression to predict DistanceError from OrientationError.
We found a significant relation (F(1,616), p < 0.001) with r2=0.53.
We acknowledge this limitation of our approach, which is due to the

fact that it relies on passive tokens and thus on what can be inferred

from the three finger contact points only. However, this limitation

can be alleviated by eliminating a range of unlikely orientations

that fall out of users’ range of motion, possibly warning users if

the manipulated token still features an axis of symmetry.

7 DISCUSSION AND FUTUREWORK
Taken together, TouchTokenBuilder and TouchTokenTracker enable
designers to build low-cost tangible interfaces using TouchToken

Centroid Symmetric template points

Figure 8: Token orientation: (left) an example of ambiguity;
(right) error-prone tokens: House, Rabbit, Cat,Weapon2.

while addressing several limitations of the original approach. This

article shows that these tools enable the design and tracking of sets

that feature up to five arbitrarily-shaped tokens. Each of the two

tools, however, still has its own limitations, several of which can

be addressed in future work.

TouchTokenTracker provides an estimate of each token’s location

and orientation, but these can be wrong in some cases. As shown

earlier, we can eliminate high-amplitude errors, but there will still

remain some uncertainty. This latter limitation results from the

trade-off between accuracy and ease-of-implementation: relying

on fully passive tokens makes building tangible interfaces easy, but

requires the system to infer a lot from very few input data, which

are limited in our case to the fingers’ contact points.

TouchTokenBuilder lets users freely position notches on the to-

kens, and warns them about potential conflicts, and about uncom-

fortable grasps. However, our results show that enabling users

to calibrate comfort recommendations based on their own hands

would be a nice addition to TouchTokenBuilder . We also observed

variations in the ease of use of TouchTokenBuilder depending on

whether designers had already used TouchTokens or not. Because

TouchTokens are very low-cost, we encourage designers to build

the set of basic TouchTokens described in [19] in order to get a first

experience with the approach. The feedback that we collected could

also help improve TouchTokenBuilder with, e.g., the ability to get a

view of the SVG export at any time during the design, or the use of

multi-touch input (when available) to position notches. Finally, we

plan to extend TouchTokenBuilder in order to enable designers to

easily make flexible versions of their tokens [20].

Custom-made Tangible Interfaces with TouchTokens AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy

REFERENCES
[1] Caroline Appert, Olivier Chapuis, Emmanuel Pietriga, and María-Jesús Lobo.

2015. Reciprocal Drag-and-Drop. ACM Trans. Comput.-Hum. Interact. 22, 6,
Article 29 (Sept. 2015), 36 pages. https://doi.org/10.1145/2785670

[2] Michael A. Arbib. 1990. Programs, schemas, and neural networks for control

of hand movements: Beyond the RS framework. Attention and performance 13:
Motor representation and control. (1990), 111–138.

[3] Daniel Avrahami, Jacob O. Wobbrock, and Shahram Izadi. 2011. Portico: Tangible

Interaction on and Around a Tablet. In Proc. UIST ’11. ACM, 347–356. https:

//doi.org/10.1145/2047196.2047241

[4] Rachel Blagojevic and Beryl Plimmer. 2013. CapTUI: Geometric Drawing with

Tangibles on a Capacitive Multi-touch Display. In Proc. INTERACT ’13. Springer,
511–528.

[5] David Bouchard and Steve Daniels. 2015. Tiles That Talk: Tangible Templates

for Networked Objects. In Proc. TEI ’15. ACM, 197–200. https://doi.org/10.1145/

2677199.2680607

[6] Wolfgang Büschel, Ulrike Kister, Mathias Frisch, and Raimund Dachselt. 2014.

T4 - Transparent and Translucent Tangibles on Tabletops. In Proc. AVI ’14. ACM,

81–88. https://doi.org/10.1145/2598153.2598179

[7] Liwei Chan, Stefanie Müller, Anne Roudaut, and Patrick Baudisch. 2012. Cap-

Stones and ZebraWidgets: Sensing Stacks of Building Blocks, Dials and Slid-

ers on Capacitive Touch Screens. In Proc. CHI ’12. ACM, 2189–2192. https:

//doi.org/10.1145/2207676.2208371

[8] Maurizio Gentilucci, Luana Caselli, and Claudio Secchi. 2003. Finger control

in the tripod grasp. Experimental Brain Research 149, 3 (01 Apr 2003), 351–360.

https://doi.org/10.1007/s00221-002-1359-3

[9] Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual pro-

gramming environments: a “cognitive dimensions” framework. JVLC 7, 2 (1996),

131–174. https://doi.org/10.1006/jvlc.1996.0009

[10] C. Hager-Ross and M.H. Schieber. 2000. Quantifying the independence of human

finger movements: comparisons of digits, hands, and movement frequencies.

Journal of Neuroscience 20, 22 (2000), 8542.
[11] Michael S. Horn and Robert J. K. Jacob. 2007. Designing Tangible Programming

Languages for Classroom Use. In Proc. TEI ’07. ACM, 159–162. https://doi.org/

10.1145/1226969.1227003

[12] Sungjae Hwang, Myungwook Ahn, and Kwang-yun Wohn. 2013. MagGetz: Cus-

tomizable Passive Tangible Controllers on and Around Conventional Mobile De-

vices. In Proc. UIST ’13. ACM, 411–416. https://doi.org/10.1145/2501988.2501991

[13] Hans-Christian Jetter, Jens Gerken, Michael Zöllner, Harald Reiterer, and Natasa

Milic-Frayling. 2011. Materializing the Query with Facet-streams: A Hybrid

Surface for Collaborative Search on Tabletops. In Proc. CHI ’11. ACM, 3013–3022.

https://doi.org/10.1145/1978942.1979390

[14] Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrunner. 2007. The

reacTable: Exploring the Synergy Between Live Music Performance and Tabletop

Tangible Interfaces. In Proc. TEI ’07. ACM, 139–146. https://doi.org/10.1145/

1226969.1226998

[15] Stefanie Klum, Petra Isenberg, Ricardo Langner, Jean-Daniel Fekete, and Raimund

Dachselt. 2012. Stackables: Combining Tangibles for Faceted Browsing. In Proc.
AVI ’12. ACM, 241–248. https://doi.org/10.1145/2254556.2254600

[16] Sven Kratz, Tilo Westermann, Michael Rohs, and Georg Essl. 2011. CapWidgets:

Tangible Widgets Versus Multi-touch Controls on Mobile Devices. In CHI EA ’11.

ACM, 1351–1356. https://doi.org/10.1145/1979742.1979773

[17] Rong-Hao Liang, Liwei Chan, Hung-Yu Tseng, Han-Chih Kuo, Da-Yuan Huang,

De-Nian Yang, and Bing-Yu Chen. 2014. GaussBricks: Magnetic Building Blocks

for Constructive Tangible Interactions on Portable Displays. In Proc. CHI ’14 (CHI
’14). ACM, New York, NY, USA, 3153–3162. https://doi.org/10.1145/2556288.

2557105

[18] Rong-Hao Liang, Kai-Yin Cheng, Liwei Chan, Chuan-Xhyuan Peng, Mike Y. Chen,

Rung-Huei Liang, De-Nian Yang, and Bing-Yu Chen. 2013. GaussBits: Magnetic

Tangible Bits for Portable and Occlusion-free Near-surface Interactions. In CHI
EA ’13. ACM, 2837–2838. https://doi.org/10.1145/2468356.2479537

[19] Rafael Morales González, Caroline Appert, Gilles Bailly, and Emmanuel Pietriga.

2016. TouchTokens: Guiding Touch Patterns with Passive Tokens. In Proc. CHI ’16.
ACM, New York, NY, USA, 4189–4202. https://doi.org/10.1145/2858036.2858041

[20] Rafael Morales González, Caroline Appert, Gilles Bailly, and Emmanuel Pietriga.

2017. Passive Yet Expressive TouchTokens. In Proc. CHI ’17 (CHI ’17). ACM, New

York, NY, USA, 3741–3745. https://doi.org/10.1145/3025453.3025894

[21] Mikko Pyykkönen, Jukka Riekki, Marko Jurmu, and Iván Sanchéz Milara. 2013.

Activity Pad: Teaching Tool Combining Tangible Interaction and Affordance of

Paper. In Proc. ITS ’13. ACM, 135–144. https://doi.org/10.1145/2512349.2512810

[22] Jinsil Hwaryoung Seo, Janelle Arita, Sharon Chu, Francis Quek, and Stephen

Aldriedge. 2015. Material Significance of Tangibles for Young Children. In Proc.
TEI ’15. ACM, 53–56. https://doi.org/10.1145/2677199.2680583

[23] Yang Ting Shen and Ali Mazalek. 2010. PuzzleTale: A Tangible Puzzle Game for

Interactive Storytelling. Comput. Entertain. 8, 2, Article 11 (Dec. 2010), 15 pages.
https://doi.org/10.1145/1899687.1899693

[24] Brygg Ullmer, Hiroshi Ishii, and Robert J. K. Jacob. 2005. Token+Constraint

Systems for Tangible Interaction with Digital Information. ACM Trans. Comput.-
Hum. Interact. 12, 1 (2005), 81–118. https://doi.org/10.1145/1057237.1057242

[25] Consuelo Valdes, Diana Eastman, Casey Grote, Shantanu Thatte, Orit Shaer, Ali

Mazalek, Brygg Ullmer, and Miriam K. Konkel. 2014. Exploring the Design Space

of Gestural Interaction with Active Tokens Through User-defined Gestures. In

Proc. CHI ’14. ACM, 4107–4116. https://doi.org/10.1145/2556288.2557373

[26] Simon Voelker, Christian Cherek, Jan Thar, Thorsten Karrer, Christian Thoresen,

Kjell Ivar Øvergård, and Jan Borchers. 2015. PERCs: Persistently Trackable

Tangibles on Capacitive Multi-Touch Displays. In Proc. UIST ’15. ACM, 351–356.

https://doi.org/10.1145/2807442.2807466

[27] Simon Voelker, Kosuke Nakajima, Christian Thoresen, Yuichi Itoh, Kjell Ivar

Øvergård, and Jan Borchers. 2013. PUCs: Detecting Transparent, Passive Un-

touched Capacitive Widgets on Unmodified Multi-touch Displays. In Proc. ITS
’13. ACM, 101–104. https://doi.org/10.1145/2512349.2512791

[28] Neng-Hao Yu, Sung-Sheng Tsai, I-Chun Hsiao, Dian-Je Tsai, Meng-Han Lee,

Mike Y. Chen, and Yi-Ping Hung. 2011. Clip-on Gadgets: Expanding Multi-

touch Interaction Area with Unpowered Tactile Controls. In Proc. UIST ’11. ACM,

367–372. https://doi.org/10.1145/2047196.2047243

[29] Vladimir M Zatsiorsky, Zong-Ming Li, and Mark L Latash. 2000. Enslaving effects

in multi-finger force production. Experimental Brain Research 131, 2 (2000),

187–195.

[30] Jamie Zigelbaum, Michael S. Horn, Orit Shaer, and Robert J. K. Jacob. 2007. The

Tangible Video Editor: Collaborative Video Editing with Active Tokens. In Proc.
TEI ’07. ACM, 43–46. https://doi.org/10.1145/1226969.1226978

https://doi.org/10.1145/2785670
https://doi.org/10.1145/2047196.2047241
https://doi.org/10.1145/2047196.2047241
https://doi.org/10.1145/2677199.2680607
https://doi.org/10.1145/2677199.2680607
https://doi.org/10.1145/2598153.2598179
https://doi.org/10.1145/2207676.2208371
https://doi.org/10.1145/2207676.2208371
https://doi.org/10.1007/s00221-002-1359-3
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1145/1226969.1227003
https://doi.org/10.1145/1226969.1227003
https://doi.org/10.1145/2501988.2501991
https://doi.org/10.1145/1978942.1979390
https://doi.org/10.1145/1226969.1226998
https://doi.org/10.1145/1226969.1226998
https://doi.org/10.1145/2254556.2254600
https://doi.org/10.1145/1979742.1979773
https://doi.org/10.1145/2556288.2557105
https://doi.org/10.1145/2556288.2557105
https://doi.org/10.1145/2468356.2479537
https://doi.org/10.1145/2858036.2858041
https://doi.org/10.1145/3025453.3025894
https://doi.org/10.1145/2512349.2512810
https://doi.org/10.1145/2677199.2680583
https://doi.org/10.1145/1899687.1899693
https://doi.org/10.1145/1057237.1057242
https://doi.org/10.1145/2556288.2557373
https://doi.org/10.1145/2807442.2807466
https://doi.org/10.1145/2512349.2512791
https://doi.org/10.1145/2047196.2047243
https://doi.org/10.1145/1226969.1226978

	Abstract
	1 Introduction
	2 Related Work
	3 TouchToken Builder
	3.1 Designing arbitrarily-shaped tokens
	3.2 Anatomical considerations
	3.3 Recognition conflicts

	4 TouchToken Tracker
	5 Experiment 1: Designing Tokens
	6 Experiment 2: Tracking Tokens
	7 Discussion and Future Work
	References

